取消
搜索历史
热搜词
视频
活动
创新2.0
I T
产业
当前位置:首页 >产经•城市 > 产经 > 物联网 > 正文
医疗AI要怎么做才能实现技术场景落地?
来源:电子工程世界  作者:佚名 2018-08-23 09:48:11
从AlphaGo大战柯洁,到OpenAI血虐Dota2半职业选手,AI再次登上了历史的舞台。自2012年以后,得益于数据量的上涨、深度学习的出现的运算力的大幅提升,人工智能开始大爆发。

就在今年3月,“中国AI公司遭遇C轮死”引起哗然;5月有报道称IBM 医疗部门大幅度裁员,规模达50%-70%;随后美国医学媒体STAT有消息传出,STAT拿到了来自时任IBM Watson Health副首席健康官的Andrew Norden的文件,该报告显示正在使用Watson for Oncology(Watson肿瘤解决方案)的医生们提出了强烈的批评,指出 Watson经常提出不准确的医疗建议,这让IBM Watson陷入了历史以来最大的信任危机。最近更有媒体调研指出,不少医疗影像AI产品躺在医院”吃灰”。

医疗AI狂欢背后是新技术频频遭遇落地场景应用的尴尬,医疗AI到底是概念意淫,或者只是一场资本游戏?如果能实现技术场景落地,那么具备哪些特征的产品才能真正被医院接受,避免遭遇“吃灰”的命运?

以患者为中心,易用友好的产品不“吃灰”

当下人工智能发展趋势不可阻挡,从国外到国内,从资本巨头到科技巨头,已经在积极布局智能医疗产业。医疗影像AI被资本高度青睐,被认为将最先实现商业化,有望实现弯道超车。

目前,很多公司已经研发出辅助不同科室医生的产品,正在加速商业布局。然而经历了2017年到2018年上半年的狂欢后,医疗AI公司们似乎并没有交出一份漂亮的答卷。据悉,与浙江邵逸夫医院影像科合作的医疗AI公司已经达到了10家之多。

汇医慧影CEO柴象飞认为,AI+医疗创业整体上还处于起步期,不管是在底层技术、还是产品创造力、产品体验上都还有很大的改进空间。目前医疗AI产品躺在医院“吃灰”有几个方面原因:第一,是大家对医疗AI有着相对较高的期待,而目前AI医疗对速度的要求和目前医疗行业变革缓慢是现在最大的矛盾,整体研发周期较长。而医疗是偏传统的行业,有很多原始行业的特性,比如新药从研发到商品化可能需要10到15年,器械的研发是5到10年。

第二,目前大部分产品其实是在医院试用,易用度和友好度还有待考察,而且目前AI参与临床还太浅太少;我们认为AI公司要不仅要以医生为中心去设计产品,把产品融入到医生的工作场景中去,还要符合医生的使用习惯,帮助医生提高诊断效率和准确率;除此外,我们还要以患者为中心去设计产品,而真正能服务患者,提高患者的就医体验才是产品设计的终点,打造易用友好的医疗AI产品是制胜的关键。举例来说,汇医慧影在既有业务数字胶片基础上,给患者提供智能化报告解读服务,得到了医院和患者多方面的欢迎。

\

差异化竞争,冲破天花板

AI技术能够通过数据训练,掌握不同的专业知识,许多商业领域均可受益。人工智能医学影像,就是利用图像识别的方法进行以图识图的判断。医学当中可能有几类数据,主要就是影像数据和病理数据,用图像识别的方法就可以解决很多其中的问题。

肺结节筛查是目前大部分AI影像公司集中的一个领域,虽然AI能帮助找出结节,但在进一步的良恶性判断与报告意见出具方面,AI尚不能给出结论。而且,目前市场上的产品多集中在肺结节上,同质化严重。一个三甲医院可能同时安装10余家AI公司的产品,但经常使用的也就一两家,其他家的产品由于没有医生的反馈来进行优化,产品迭代缓慢,出现躺在医院“吃灰”的情况。

肺结节公开数据多,很多数据集可以直接下载,所以近两年大量公司开发出了肺结节筛查产品。但是,对于更为广泛的病种,AI产品的研发却步履维艰。新病种数据获取难度大,高质量数据需要专家进行合作标注,整个病种AI产品的研发周期较长。此外,在医疗场景当中单独识别图像这件事情并不足以满足医生的需求,疾病筛查和辅助诊断临床价值有限,要成为医生日常使用必不可少的工具,就要介入到到临床决策,医生更需要能覆盖全部医疗流程的AI产品。

因此,深入更多病种和参与更多医疗流程的产品,可能能得到更多医院和医生的支持和肯定,这可能是未来AI影像公司最重要的竞争优势。这一点上,汇医慧影独辟蹊径,希望以影像数据切入,让AI贯通影像科全流程里,实现从筛查到诊断再到治疗和预后全部环节里,完成一个服务闭环。

2017年,汇医慧影对外发布了三款比较常用的用于筛查场景的以图识图产品,比如CT肺结节的检测、胸部DR检测和骨折的检测,其训练模型当中不光是有图像的信息,还加上了很多患者临床的信息、检验的信息以及愈后随访的信息,其AI产品不仅能够实现病灶定位和标注,还可以参与肿瘤的分期分型,并能给医生的治疗决策提供支持。

2018年4月,301医院发布主动脉夹层人工智能平台AORTIST2.0,将新病种模型开发和单病种全流程覆盖进行了很好的结合。通过验证,AORTIST2.0的准确度远超常规手动测量,还提供主动脉扩张和复合终点事件预后预测结果。AORTIST2.0的表现基本上能够达到301医院这样的精准判断和预测水平,能够将40%的五年愈后降到15%,能够更加深入医疗的场景和决策化的流程。

柴象飞表示,医疗AI已经进入下半场,AI已经从1.0时代走向了2.0时代,这一点变化的原因是,过去1-2年里,我们聚焦于为医生提高诊断效率而努力,今天我们发现,医疗服务的真正核心是患者,以患者为中心,打通从患者到医生再到医院这条服务链条至关重要。

编辑:申栋栋
关键字: 智能医疗  AI  技术场景 
活动 In话题| CIO知行社 | 信息化大会

中交西筑互联网+装备及施工现场数字化综合应用

嘉宾职位:中交西安筑路机械有限公司总经理助理

不管是互联网+装备还是装备插上互联网翅膀跟现在的时代结合,最核心的一点还是制造业。归根结底,我们还是做产业,无非就是现在我们做战略...

分享到微信 ×

打开微信,点击底部的“发现”,
使用“扫一扫”即可将网页分享至朋友圈。